توسعه یک سیستم تشخیص مشتری تلفیقی مبتنی بر درخت رگرسیونی هرس شده و شبکه عصبی بهبودیافته

Authors

Abstract:

  In today’s world, customer purchasing behavior forecasting is one of the most important aspects of customer attraction. Good forecasting can help to develop marketing strategies more accurately and to spend resources more effectively. The creation of a customer recognition system (CRS) model concerns a difficult task due to the large number of possible features. Furthermore, there is a high need to create a CRS that have both low complexity and good forecasting abilities at the same time. Thus, the purpose of this paper is to develop a hybrid CRS (HCRS) model that is computationally efficient and effective. The novelty of the HCRS lies in the design and implementation of the mentioned system by combining a pruned regression tree (PRT) that increases computational speed to select suitable subset of features and designing an improved Feedforward neural network (IFFNN) that practically provides better forecasting results. Since customer identification is one of the concerns in insurance industry, an insurance company dataset has been used. The obtained results show that the HCRS selects just 7% of the available features in this way considerably reducing computation costs. In addition, the results show that making the IFFNN led to more accurate forecasting than the methods compared .

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

طراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی

In this paper, Automatic electrocardiogram (ECG) arrhythmias classification is essential to timely diagnosis of dangerous electromechanical behaviors and conditions of the heart. In this paper, a new method for ECG arrhythmias classification using wavelet transform (WT) and neural networks (NN) is proposed. Here, we have used a discrete wavelet transform (DWT) for processing ECG recordings, and...

full text

یک سیستم هوشمند پزشکیار مبتنی بر شبکه عصبی مصنوعی در تشخیص بیماری دیابت

Backgrounds: Early detection of diabetes is critical to avoid complications and damage caused by this disease. The purpose of this paper is designing an intelligent system for Diabetes prediction (healthy or patient) by using regression method based on Multilayer Perceptron Neural Network. Methods: In this descriptive-analytic study, an intelligent system is designed to classification diabetes...

full text

طراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی

در این مقاله، یک روش جدید برای طبقه­بندی آریتمی­های قلبی بر مبنای تبدیل ویولت و شبکه­های عصبی ارائه شده است. از تبدیل ویولت گسسته (dwt) جهت پردازش رکوردهای ecg. و استخراج ویژگی­های زمان – فرکانس استفاده می­شود. نتیجه­ی بدست آمده به عنوان بردار ورودی برای آموزش و تست یک شبکه­ی عصبی مورد استفاده قرار می­گیرد. هر چند که در سال­های اخیر، الگوریتم­های متنوعی برای تشخیص آریتمی­های قلبی پیشنهاد شده­ان...

full text

طراحی یک سیستم تشخیص اسکناس مبتنی بر شبکه عصبی با استفاده از مشخصه های بافت و رنگ تصویر

Since money exchange is important in our daily life, many types of equipments such as Vending Machines, Currency Sorters, Automatic Teller Machines (ATM) and Currency Recognition systems for blind people have been made. More advanced devices with more capabilities are being made each day. As a result, efficient, fast and reliable currency recognition methods are required. Most currency recognit...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 4

pages  191- 202

publication date 2011-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023